CFU-megakaryocytic progenitors expanded ex vivo from cord blood maintain their in vitro homing potential and express matrix metalloproteinases.

نویسندگان

  • N Shirvaikar
  • R Reca
  • A Jalili
  • L Marquez-Curtis
  • S Fong Lee
  • M Z Ratajczak
  • A Janowska-Wieczorek
چکیده

BACKGROUND In patients transplanted with cord blood (CB), prolonged thrombocytopenia is a major complication. However, this could be alleviated by supplementing the CB graft with ex vivo-expanded megakaryocytic progenitors (CFU-Meg), provided that the homing properties of these cells are not affected negatively by expansion. METHODS AND RESULTS We assessed the in vitro homing potential of CFU-Meg progenitors expanded from CB and showed that the combination of thrombopoietin (TPO) with interleukin-3 (IL-3) used for expansion not only results in optimal proliferation of CFU-Meg but also protects these cells from apoptosis. Moreover, we found that ex vivo-expanded CFU-Meg maintained expression of the CXCR4 receptor throughout a 9-day culture and were chemoattracted towards a stromal cell-derived factor-1 (SDF-1) gradient. They also expressed matrix metalloproteinase-9 (MMP-9) and membrane-type (MT) 1-MMP, and transmigrated across the reconstituted basement membrane Matrigel. Finally, we observed that SDF-1 up-regulated the expression of both MMP-9 and MT1-MMP in CB CD34(+) cells and ex vivo-expanded CFU-Meg. DISCUSSION We suggest that CB-expanded CFU-Meg, in particular those from day 3 of expansion, when their proliferation and in vitro homing potential are maximal, could be employed to supplement CB grafts and speed up platelet recovery in transplant recipients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells

Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...

متن کامل

EXPANSION OF HUMAN CORD BLOOD PRIMITIVE PROGENITORS IN SERUM-FREE MEDIA USING HUMAN BONE MARROW MESENCHYMAL STEM CELLS

Ex vivo expansion of human umbilical cord blood cells (HUCBC) is explored by several investigators to enhance the repopulating potential of HUCBC. The proliferation and expansion of human hematopoietic stem cells (HSC) in ex vivo culture was examined with the goal of generating a suitable clinical protocol for expanding HSC for patient transplantation. Using primary human mesenchymal stem ...

متن کامل

Hematopoietic potential of cryopreserved and ex vivo manipulated umbilical cord blood progenitor cells evaluated in vitro and in vivo.

The hematopoietic potential of cryopreserved and ex vivo manipulated umbilical cord blood (UCB) samples was evaluated in vitro and in vivo. Phenotypic analysis shows that approximately 1% of cord blood mononuclear cells express high levels of CD34 antigen on their surface (CD34hi), but none of a panel of lineage antigens (Lin-), suggesting that they are hematopoietic progenitor cells that have ...

متن کامل

Effect of anti-CD52 antibody alemtuzumab on ex-vivo culture of umbilical cord blood stem cells

BACKGROUND Excessive maturation of hematopoietic cells leads to a reduction of long-term proliferative capability during cord blood (CB) expansion. In this study, we report the effects of anit-CD52 (Alemtuzumab, Campath) on both short- and long-term ex vivo expansion of CB hematopoietic stem cells (HSC) by evaluating the potential role of Alemtuzumab in preserving the repopulating capability in...

متن کامل

Comparison of the Ex Vivo Expansion of UCB-Derived CD34+ in 3D DBM/MBA Scaffolds with USSC as a Feeder Layer

    Objective(s): Ex vivo expansion of hematopoitic stem cells is an alternative way to increase umbilical cord blood (UCB)-CD34+ cells for bone marrow transplantation. For this purpose demineralized bone matrix (DBM) and mineralized bone allograft (MBA) as two scaffolds based on bone matrix and stem cell niche, were simultaneously used to enhance the effect of human mesenchymal pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cytotherapy

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 2008